While some tools, such as plotFingerprint, specifically address ChIP-seq-issues, the majority of tools is widely applicable to deep-sequencing data, including RNA-seq. As shown in the flow chart above, our work usually begins with one or more FASTQ file(s) of deeply-sequenced samples. Choose from our selection of deep sockets, including 6-point sockets, 6-point impact sockets, and more. In stock and ready to ship. Many tricks and workarounds were required to compile bazel 3.1.0 and TensorFlow 2.3.1. Besides, most of our visitors today use a 64-bit operating system on their Raspberry Pi for their deep learning models because it is faster and more robust. DOWNLOAD DeepL 2.3.1 for Windows. This enables Disqus, Inc. To process some of your data. Disqus privacy policy. DeepL 2.3.1 add to watchlist send us an update. Application - The deep well jet pump is used to transfer clean water or other liquids similar to water in physical and chemical properties. Deep well jet pumps are suitable for lifting water from the well, garden irrigation, pressure boosting of running water, and supporting equipment.
Latest versionReleased:
Useful tools for exploring deep sequencing data
Project description
deepTools addresses the challenge of handling the large amounts of datathat are now routinely generated from DNA sequencing centers. deepToolscontains useful modules to process the mapped reads data for multiplequality checks, creating normalized coverage files in standardbedGraph and bigWig file formats, that allow comparison betweendifferent files (for example, treatment and control). Finally, usingsuch normalized and standardized files, deepTools can create manypublication-ready visualizations to identify enrichments and forfunctional annotations of the genome.
For support or questions please make a post on Biostars. For feature requests, please open an issue on github.
For further documentation, please see our read the docs page.
Citation:
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, HeyneS, Dündar F, Manke T. deepTools2: a next generation web server fordeep-sequencing dataanalysis.Nucleic Acids Research. 2016 Apr 13:gkw257.
Release historyRelease notifications | RSS feed
3.5.1
3.5.0
3.4.3
3.4.2
3.4.1
3.4.0
3.3.2
3.3.1
3.3.0
3.2.1
3.2.0
3.1.3
3.1.2
3.1.1
3.1.0
3.0.2
3.0.1
3.0.0
2.5.7
2.5.6
2.5.5
2.5.4
2.5.3
2.5.2
2.5.1
2.5.0.1
2.5.0
2.4.3
Deeper 2019 Torrent
2.4.2
2.4.1
2.4.0
2.3.6
2.3.5
2.3.4
2.3.3
2.3.2
2.3.1
Deeper 2019 Film
2.3.0
2.2.4
2.2.3
2.2.2
2.2.1
2.2.0
2.1.0
2.0.1
1.5.12
1.5.11
1.5.10
1.5.9.1
Deeper 2019 Movie
1.5.9
1.5.8.2
1.5.8.1
1.5.8
1.5.7
1.5.6
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size deepTools-3.5.1-py3-none-any.whl (233.7 kB) | File type Wheel | Python version py3 | Upload date | Hashes |
Filename, size deepTools-3.5.1.tar.gz (199.7 kB) | File type Source | Python version None | Upload date | Hashes |
Hashes for deepTools-3.5.1-py3-none-any.whl
Algorithm | Hash digest |
---|---|
SHA256 | ab66e9dc54a6999a44ba8da070d02d5c31db86699329a19ba2ec35de07f56a48 |
MD5 | 1d608daa3b75e087f759d7b0d173df05 |
BLAKE2-256 | 8c9b92fbfc413548a5d690061ef533c7521af71ebce733ce50e4b6eea3d69d4a |
Hashes for deepTools-3.5.1.tar.gz
Algorithm | Hash digest |
---|---|
SHA256 | 62eea132513afa5f6bb51387e5866a5c3a26613aeb7e8c9600c38becf2ecb716 |
MD5 | 40c49b36ca8ef899e2d6a8e7674e1fb1 |
BLAKE2-256 | adf74187b99b63258631f6fa457b42fbbfe8d0b27efeb5f20a374271f9522a9d |
- Background
Tool for the analysis and visualization of sample correlations based on the output of multiBamSummary ormultiBigwigSummary. Pearson or Spearman methods are available to compute correlationcoefficients. Results can be saved as multiplescatter plots depicting the pairwise correlations or as a clustered heatmap,where the colors represent the correlation coefficients and the clusters are constructed using complete linkage.Optionally, the values can be saved as tables, too.
detailed help:
--corData, -in | Compressed matrix of values generated by multiBigwigSummary or multiBamSummary |
--corMethod, -c | |
Possible choices: spearman, pearson Correlation method. | |
--whatToPlot, -p | |
Possible choices: heatmap, scatterplot Choose between a heatmap or pairwise scatter plots |
--plotFile, -o | File to save the heatmap to. The file extension determines the format, so heatmap.pdf will save the heatmap in PDF format. The available formats are: .png, .eps, .pdf and .svg. |
--skipZeros | By setting this option, genomic regions that have zero or missing (nan) values in all samples are excluded. |
--labels, -l | User defined labels instead of default labels from file names. Multiple labels have to be separated by spaces, e.g. –labels sample1 sample2 sample3 |
--plotTitle, -T | |
Title of the plot, to be printed on top of the generated image. Leave blank for no title. (Default: ) | |
--plotFileFormat | |
Possible choices: png, pdf, svg, eps, plotly Image format type. If given, this option overrides the image format based on the plotFile ending. The available options are: png, eps, pdf and svg. | |
--removeOutliers | |
If set, bins with very large counts are removed. Bins with abnormally high reads counts artificially increase pearson correlation; that’s why, multiBamSummary tries to remove outliers using the median absolute deviation (MAD) method applying a threshold of 200 to only consider extremely large deviations from the median. The ENCODE blacklist page (https://sites.google.com/site/anshulkundaje/projects/blacklists) contains useful information about regions with unusually high countsthat may be worth removing. | |
--version | show program’s version number and exit |
--outFileCorMatrix | |
Save matrix with pairwise correlation values to a tab-separated file. |
--plotHeight | Plot height in cm. (Default: 9.5) |
--plotWidth | Plot width in cm. The minimum value is 1 cm. (Default: 11) |
--zMin, -min | Minimum value for the heatmap intensities. If not specified, the value is set automatically |
--zMax, -max | Maximum value for the heatmap intensities.If not specified, the value is set automatically |
--colorMap | Color map to use for the heatmap. Available values can be seen here: http://matplotlib.org/examples/color/colormaps_reference.html |
--plotNumbers | If set, then the correlation number is plotted on top of the heatmap. This option is only valid when plotting a heatmap. |
--xRange | The X axis range. The default scales these such that the full range of dots is displayed. |
--yRange | The Y axis range. The default scales these such that the full range of dots is displayed. |
--log1p | Plot the natural log of the scatter plot after adding 1. Note that this is ONLY for plotting, the correlation is unaffected. |
Deeper 2019
example usages:plotCorrelation -in results_file –whatToPlot heatmap –corMethod pearson -o heatmap.png
plotCorrelation
computes the overall similarity between two or more files based on read coverage (or other scores) within genomic regions, which must be calculated using either multiBamSummary or multiBigwigSummary.
The result of the correlation computation is a table of correlation coefficients that indicates how “strong” the relationship between two samples is and it will consist of numbers between -1 and 1. (-1 indicates perfect anti-correlation, 1 perfect correlation.)
We offer two different functions for the correlation computation: Pearson or Spearman.
The Pearson method measures the metric differences between samples and is therefore influenced by outliers. More precisely, it is defined as the covariance of two variables divided by the product of their standard deviation.
The Spearman method is based on rankings.If you imagine a race with 3 participants where the winner and runner-up are very close together while the third person broke her leg and comes in way, way after the first two, then Pearson would be strongly influenced by the fact that the third person had a great distance to the first ones while Spearman would only care about the fact that person 1 came in first, person 2 came in second and person 3 got the third rank, the distances between them are ignored.
Tip
Pearson is an appropriate measure for data that follows a normal distribution, while Spearman does not make this assumption and is generally less driven by outliers, but with the caveat of also being less sensitive.
If you use the heatmap output of plotCorrelation
, this will automatically lead to a clustering of the samples based on the correlation coefficients. This helps to determine whether the different sample types can be separated, i.e., samples of different conditions are expected to be more dissimilar to each other than replicates within the same condition.
The distances of the sample pairs are based on the correlation coefficients, r, where distance = 1 - r. The similarity of the samples is assessed using the nearest point algorithm, i.e., the shortest distance between any 2 members of the tree is considered to decide whether to join a cluster or not. For more details of the algorithm, go here.
Here’s an example of RNA-seq data from different human cell lines that we had downloaded from https://genome.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixHuman.html.
As you can see, both correlation calculations more or less agree on which samples are nearly identical (the replicates, indicated by 1 or 2 at the end of the label). The Spearman correlation, however, seems to be more robust and meets our expectations more closely as the two different cell types (HUVEC and IMR90) are clearly separated.
In the following example, a correlation analysis is performed based on the coverage file computed by multiBamSummary or multiBigwigSummary for our test ENCODE ChIP-Seq datasets.
Scatterplot
Here we make pairwose scatterplots of the average scores per transcript that we calculated using multiBigwigSummary and include the Pearson correlation coefficients for each comparison.
Heatmap
In addition to scatterplots, heatmaps can be generated where the pairwise correlation coefficients are depicted by varying color intensities and are clustered using hierarchical clustering.
Deeper 2019 Full Movie
The example here calculates the Spearman correlation coefficients of read counts.The dendrogram indicates which samples’ read counts are most similar to each other.
deepTools Galaxy. | code @ github. |
Comments are closed.